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Abstract 

Brain computer Interface (BCI) development encapsulates three basic processes: data 

acquisition, data processing, and device control. Since the start of the millennium the BCI 

development cycle has undergone a metamorphosis. This is mainly due to the increased 

popularity of BCI applications in both commercial and research circles. One of the 

focuses of BCI research is to bridge the gap between laboratory research and commercial 

applications using this technology.  

 

A vast variety of new approaches are being employed for BCI development ranging from 

novel paradigms, such as simultaneous acquisitions, through to asynchronous BCI 

control. The strategic usage of computational techniques, comprising the heart of the BCI 

system, underwrites this vast range of approaches. This chapter discusses these 

computational strategies and translational techniques including dimensionality reduction, 

feature extraction, feature selection, and classification techniques. 

 

1. INTRODUCTION 

Brain-computer interfacing (BCI) is a highly challenging multidisciplinary area of 

research. Since the start of the millennium, research groups exploring this area have made 

increasingly impressive progress. The core BCI research has opened up hundreds of 

avenues for its applications. There have been interesting revelations in the field of 

rehabilitation ((Birbaumer, 2006); (Ang et al., 2010)), gaming ((Nijholt and Desney, 

2009)), composing music ((Miranda et al., 2011)), and other biophysics applications 
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based on BCI. However, there are still a lot of unanswered questions facing the BCI 

community, which impedes the launch of mainstream commercial BCI applications. The 

first five international meetings of BCI community  (Wolpaw et al., 2000), (Vaughan et 

al., 2003), (Vaughan and Wolpaw, 2006) (Vaughan and Wolpaw, 2011), and (Huggins et 

al., 2014)) have evolved sufficient consensus on the BCI terminology, signals used and 

the computational techniques but questions relating to user variability, session variability 

and optimal training remain a major research issues. The inherent complexity and 

enormity of the neural data from measurement techniques such as (electroencephalogram 

(EEG), Electrocorticogram (ECoG), functional near infra-red spectroscopy (fNIRS), and 

functional Magnetic resonance Imaging (fMRI)) warrants sophistication in computational 

strategies for meaningful interpretation.  

 

Research areas of BCI evolved from work of Hans Berger, a German Psychiatrist who 

first recorded EEG in 1929. Since then EEG has served as a standard Clinical diagnostic 

tool for a range of neurological complexities (Tudor et al., 2005). Among several 

definitions, an EEG is expressed as sustained fluctuations of electric potential, recorded 

from the human scalp which can be used to decipher corresponding variations in the 

cortex of the brain. Our ability to feel, think and act can be attributed to these variations 

of electrical activity. Farwell & Donchin, 1988 first demonstrated that the ability of EEG 

response to change to an externally accentuated event can be developed as a non-

muscular communication channel for sending messages and commands to the outside 

world for control purposes; this is popularly known as the brain computer interface. 

Subsequently, clinical BCI applications such as a speller  have  underlined the popularity 

of speller based event related potential (ERP) as the basis of EEG based BCI (Sellers and 

Donchin, 2006).   

 

The principles underlying of this opening up of a communication channel between the 

brain and the computer are based on the classification of the changes in the EEG spectra 

which relate to, for example, the imagination of movements (Pfurtscheller and Lopes da 

Silva, 1999). The heart of the BCI is the translational algorithm which converts the 
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electrophysiological measurements from the user into output that controls external 

devices (Wolpaw et al., 2003). We use the term EEG here to typify the signal which is 

used as the vehicle for development of the BCI; EEG being the most popular and easy to 

record – other brain-related signals include electrocorticogram (ECoG), 

magnetoencephalogram (MEG), and functional magnetic resonance (fMRI) images. 

These will be discussed in the section - ‘Sources of Information for a BCI’. Ideally an 

interface may suggest a two way communication channel but the present state of the art 

in BCI purposes is one way communication i.e. from the brain to the computer. 

Information from the brain in the form of signals or images has been sufficient to realise 

a plethora of applications (Guger et al., 1999), (Perelmouter and Birbaumer, 2000), and 

(Birbaumer, 2006) for medical rehabilitation and for gaming by companies like Emotiv 

(Emotiv, Austrialia) and Neurosky (Neurosky, USA).  

 

This chapter proceeds as follows. Section 2 gives an overview of sources of information 

for BCI. Section 3 considers the BCI development process. Section 4 is concerned with 

the types of BCI. Section 5 discusses nomenclature for feature extraction and 

classification. Section 6 and 7 cater to evaluation criteria, conclusion and future work.         

             

2. SOURCES OF INFORMATION FOR A BCI 

A brain computer interface is developed on the basis of the knowledge that can be 

extracted from various sources of information from the brain, mapped to our abilities to 

feel, think, and act. These sources are in the form of signals or images. Scalp EEG has 

been one of the most popular signals used in BCI research (Hwang et al., 2013). Over the 

years, the efforts of neuroscientists to investigate EEG (Donchin et al., 1984), (Handy, 

2005) has proved be a real benefit to the BCI development process as it has provided 

more avenues to implement the mapping of our cognitive processes to the characteristics 

of the EEG Signal. 
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2.1 Electroencephalogram (EEG)  

EEG is clinically defined as the mean electrical activity of the brain recorded as the 

summed action potentials of thousands of neurons firing together (Niedermeyer and 

Silva, 2005). It is composed of electrical rhythms and transient discharges which are 

distinguished by location, frequency, amplitude, form, periodicity, and functional 

properties (Schomer and Lopes de Silva, 2011). EEG activity has been classified on the 

basis of these attributes. The most widely accepted basis of classification of EEG activity 

is done using frequency segregation into prototypical bands, referred to as delta, theta, 

alpha, beta, gamma, and mu rhythms. Table 1 lists the various EEG rhythms, their 

frequency and amplitude range, the brain regions in which they are most prominent, and 

the events most often related to each of them. 

 

Table 1. Classification of frequency components in Rhythmic Brain Activity. 

 

2.1.1 Slow cortical potentials 

 

Slow cortical potentials (SCPs) are related to the emergence of a BCI application known 

as a thought translational device (TTD) (Birbaumer, 2003). SCPs are understood to be the 

result of shifts in the depolarization level of the upper cortical dendrites, caused by the 

intracortical and thalamocortical afferent inflow to neocortical layers I and II The TTD 

Frequency 
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has been designed for completely paralyzed patients and has been tested on patients with 

ALS (Amyotrophic Lateral Sclerosis) (Birbaumer, 2006). However, the use of SCPs has 

recently declined in EEG based BCI research in favour of other features such as ERPs or 

sensorimotor rhythm activations (Hwang et al., 2013). 

2.1.2 Event related potentials  

The event - related potential (ERP) is a common title for the potential changes in the EEG 

that occur in response to a particular “event” or a stimulus (Luck, 2005). These changes 

occur at very small amplitudes. Therefore, in order to reveal them, EEG samples have to 

be averaged over many repetitions. This removes the “random” fluctuations of the EEG, 

which are not stimulus-locked. ERPs can be divided into exogenous and endogenous. 

Exogenous ERPs occur up to about 100ms after the stimulus onset. They depend on the 

properties of the physical stimulus (intensity, loudness etc.). The potentials from 100ms 

post-stimulus onward are called endogenous (Ebersole and Pedley, 2003). They depend 

largely on psychological and behavioural processes related to the event. The most 

commonly studied ERP is the P300 

 

A popular example of a BCI based upon ERPs is the P300 speller, which is underwritten 

by the neuroscientific concept that a slow, large neural response is elicited after 300ms of 

a rarely occurring stimulus in a train of consecutive, continuously occurring stimuli 

(O’Brien, 1982). A P300 BCI speller operates by presenting users with a matrix of 

alphanumeric letters. Each row and column of the matrix flashes and a higher amplitude 

peak in the EEG (a P300 ERP) may be observed to occur 300ms after the target letter 

flash is presented. Interestingly it has been found that the greater the number of letters the 

higher number of flashes in the matrix and, subsequently, the better is the P300 response 

(Nam et al., 2010).         

2.1.3 Sensorimotor rhythm activations 

Sensorimotor rhythm activations are changes in activation levels that may be observed 

over the sensorimotor cortex during a range of cognitive events (Pfurtscheller and Lopes 

da Silva, 1999). Sensorimotor rhythm changes are referred to as event related 
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desynchronisation (ERD) in the event of a decrease in cortical activity and event-related 

synchronisation (ERS) in the event of an increase in motor cortical activity. They are 

most often associated with movement planning and execution (Pfurtscheller and Lopes da 

Silva, 1999), but may also be observed during tasks such as mental arithmetic (Friedrich 

et al., 2012), and mental rotation (Chen et al., 2013). 

 

Unlike the ERP the ERD/S is not phase locked to a stimulus presentation and, therefore, 

may not be identified via averaging of EEG amplitudes. Instead band-power is measured 

in frequency bands of interest (typically the alpha and beta bands) relative to a pre-

stimulus baseline period. Significant decreases or increases in band power indicate the 

presence of an ERD/S and the cortical region at which it’s observed identifies the 

corresponding cognitive process. For example, ERD over the left primary motor cortex 

hand representation area may indicate movement or planning of movement in the right 

hand. 

 

Finally, ERD/S may also be observed during motor imagery. Thus, BCI users may 

attempt to control a BCI by imagining the feeling of moving their body (kinasthetic 

motor imagery) to control a BCI without actually performing overt movement (Neuper et 

al., 2005). 

 

Case study: ERD/S detection 

An example of the ERD/S phenomena is described using a classical 8s BCI paradigm for 

left and right hand motor imagery (Pfurtscheller et al., 2006).  The paradigm consisted of 

a random repetition of cue-based trials. The subject was seated in a relaxing chair with 

armrests and was instructed to perform imagery movements prompted by a visual cue. 

Each trial started with an empty black screen; at time point t = 2s a short beep was 

presented and a cross ‘+’ appeared on the screen to arouse the subject’s attention. Then at 

second 3 (t = 3s) an arrow appears pointing either to the left or right. Each position 

indicated by this arrow prompts the subject to imagine either a left hand or a right hand 

movement. The respective movement imagination should be performed until the cross 
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disappears at t = 8s. The next trial started after a very short resting period, during which 

the EEG was continuously recorded.  

 

The time frequency approach was used to display the significant power increase or 

decrease in a predefined frequency band, thereby representing clear and easy 

visualisation of the movement-related behaviour of the induced activity averaged over 

several trials. In a pedagogical sense, increases or decreases of the power of the EEG 

related to a particular event is represented by the increase or decrease in the synchrony of 

the neuronal populations. Averaging over trials has been employed to deal with evoked 

potentials in order to improve the signal to noise ratio. This deals with any on-going base 

EEG activity, which may be considered to be noise as opposed to the actual potential 

instigated by the event or the task.  The ratio of power calculated after averaging over all 

the trials to the power within a reference interval expressed in terms of percentage is the 

ERD/S strength. 

 

ERD/S is not phase locked but time locked and specific to a frequency range. It is 

therefore conceivable that nearly identical ERD/S activity can be observed at different 

spatial locations. This will be indicative from some of the figures 1(a) and (b).    
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Fig 1: ERD/S maps for (a) Left hand motor imagery and (b) Right hand motor imagery. Three 

maps are presented for three channels C3, C4, and Cz. The vertical black line indicates the start of 

the motor imagery period at t=3s and the maps were computed with a baseline period of 0.5-1.5s.  

 

(a) 

(b) 
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The timeline for each trial is shown in figure 1. The vertical black line shows the 

presentation of the cue at time = 3s. It is clearly observed that the activity in all the 

channels before the presentation of the cue is statistically significantly (bootstrap test) 

(Graimann et al., 2002) less when compared to the activity after the cue (p<0.05). So the 

activity before the cue acts as a kind of reference to ascertain the fact that there is a clear 

increase or decrease in the ‘indicative power levels’ for a particular frequency band after 

the presentation of the cue. This is also seen in 1(b) for right hand motor imagery. Visual 

inspection of figures 1 (a) and (b) provides clear demarcation in the level of power 

activity in particular frequency bands: 8-13 Hz (alpha) and 20-30 Hz (upper beta), for the 

two respective tasks. This information is used for the manual selection of the frequency 

bands to be used for feature extraction. These bands can be employed for computing band 

power features. 

 

2.2 Functional Magnetic Resonance Imaging (fMRI) and Magneto 

encephalography (MEG) 

The relative suitability of each of the brain sources for BCI purposes may depend on the 

specific application(s) being considered i.e. the relative suitability of each source is 

relative to the anticipated outcome of the interfacing process. The metabolic 

consequences of neural activity is observed as the changes in blood flow and metabolism. 

Imaging techniques like  functional magnetic resonance imaging (fMRI) and positron 

emission tomography (PET) help us to visualise these changes in the form of images and 

may be used in BCI applications, for example (Sitaram et al., 2007). 

Associated magnetic fields produced by the neuronal activity can be detected as the 

magnetoencephalogram (MEG). MEG is more susceptible to noise and is not portable 

compared to EEG but has a far better spatial resolution (<1cm) and depth sensitivity 

(~4cm), while also having a similar time resolution. MEG has been used for BCI control. 

For example, in (Lal et al., 2005; Mellinger et al., 2007) a MEG based BCI is proposed 

and discussed.  
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2.3 Intracranial recordings ECoG (electrocorticogram) 

The Electrocorticogram (ECoG) is recorded by placing invasive electrodes under the 

skull on the surface of the cortex. A surgical procedure is required to place these intra 

cranial electrodes.  Experience suggests that the quality of the signal is better for ECoG 

than the scalp EEG and is less contaminated with artifacts, but that the ease of recording 

of the scalp EEG is superior to ECoG for BCI purposes(Schalk and Leuthardt, 2011). It 

has also been observed in some studies that the performance of the classifier is dependent 

on the user population (Hill et al., 2006). 

2.4 Functional near infra-red spectroscopy (fNIRS) 

Diffuse Optical imaging (DOI) is another method to measure distributions and 

concentrations of Oxy(HbO) and deoxy (HbR) haemoglobin in the brain. This technique 

is based on near-infrared (NIR) light and provides continuous measures of changes in 

oxygenated haemoglobin (HbO), deoxygenated haemoglobin (HbR) and total 

haemoglobin (HbT) concentrations (Gibson and Dehghani, 2009; Izzetoglu et al., 2005; 

Wolf et al., 2007).  

A recent review of current state of the art in the Brain computer interface technology at 

the fourth international meeting of the BCI community has stressed the need to develop 

robust and wearable brain acquisition methods for domesticating BCIs (Vaughan and 

Wolpaw 2011; Nicolas-Alonso and Gomez-Gil 2012). Near infrared spectroscopy 

(NIRS) has been identified to provide a better, easier asynchronous control of BCI 

applications for people unable to control EEG based BCIs (Naito, Michioka et al. 2007; 

Jackson, Mcclendon et al. 2010; Power, Falk et al. 2010; Sorger, Reithler et al. 2012). 

But there are limitations of transfer rates for a BCI developed using only NIRS (Coyle, 

Ward et al. 2007; Sitaram, Caria et al. 2009). Interestingly, a BCI developed using 

simultaneous NIRS and EEG acquisitions has been reported to enhance the BCI 

performance by at least 5% (Fazli, Mehnert et al. 2012). It is envisaged that, if combined, 

EEG and NIRS can provide robust BCI control by providing an accessible, portable, 

wearable solution not only on the bedside but also for home-use. There are several 

advantages of combining a NIRS-EEG for BCI development. Specifically, NIRS is 



11 

 

relatively robust to movement, has better spatial sensitivity, and allows non-invasive 

measurement of localized cognitive activity, thereby, empowering the BCI with minimal 

training while EEG provides optimized, precise sensor placement and quick transfer 

rates.  

 

 

3. BCI DEVELOPMENT PROCESS 

The building blocks of a BCI are depicted in figure 2. The signals from the brain are 

acquired by scalp electrodes, or intracranial electrodes and are processed to extract 

features such as the amplitudes of evoked potentials, sensorimotor cortex rhythms, or 

firing rates of cortical neurons that reflect the user’s intent. These features are then 

translated into commands that operate devices such as a simple word processing program 

(Krusienski et al., 2008), a wheelchair (Leeb et al., 2007), or a neuroprosthesis (Schalk et 

al., 2004). 
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Fig 2: The basic framework of a BCI (adopted from (Schalk et al., 2004). 

 

A more standardized model of a BCI was presented by Mason & Birch, (2003), who 

presented a taxonomy of the terms more often used in development of the BCI (Mason 

and Birch, 2003). This model lists the main components which would define the basic 

BCI arrangement, namely the user (the person/the subject), electrodes (sensors to convert 

the user’s brain state to electrical signals), amplifier, feature extractor (transforms the 

amplified electrical signals that correspond to related neurological states into feature 

values), feature translator (converts the feature values into logical and ‘feed-able’ control 

signals), the control interface (maps the control signals to the specific device to be 

controlled), the device controller (translates semantic control signals from the control 

interface into physical signals that can be used within a device) and the device itself. This 

was regarded as a standard model and streamlined the BCI terminology but still required 

some clarifications. For example, the feature translator may be renamed the feature 

classifier or simply the classifier for discrete control signals. 

 

This model, shown in figure 3, was designed using EEG signals as the ‘source of 

information’; a similar analogy can be inferred for imaging sources such as fMRI and 

positron emission tomography (PET). To explain the analogy, the subject would remain 

the same, while the counterpart of the electrodes, would be replaced by the imaging 

equipment. The other terminology for the model in terms of its applicability to the 

imaging techniques explicitly remain identical but have significant implicit changes for 

feature extraction and translational algorithms. It is pertinent to state here that for BCI 

development, the imaging techniques works in tandem with signals as sources to extract 

relevant information from the brain and its underlying processes while the task is being 

performed by the subject. The imaging techniques, so far, have not been justified as 

sources of information which could sustain BCI development on their own.  
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Fig 3: The BCI block diagram [adopted from (Mason and Birch, 2003).  

 

4. TYPES OF BCI  

BCIs are categorised on the basis of their method of working and their functionality. 

Some of the key classifications and terminology associated with present day BCI are 

considered as follows. 

4.1 Invasive and non-invasive BCIs 

Non-invasive BCIs are based on EEG measured with the scalp electrodes. In invasive 

BCIs, the electrical activity of the brain is recorded from inside the head (e.g., from the 

cerebral cortex) via intracranial electrodes or microelectrodes. These BCIs can be based 

on, for example, ECoG recordings (Schalk and Leuthardt, 2011; Scherer et al., 2003). 

Microelectrodes can also be used to record activity of a single neuron which gives rise to 

‘spikes’ as sources of brain information from which BCIs can be developed (Kennedy et 

al., 2004). 
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4.2 Synchronous and asynchronous BCIs 

Many BCIs work in a synchronous mode, i.e. in an externally paced mode. This requires 

the user to produce specific mental states in a predefined time window. For synchronous 

BCI, the control is system-initiated. In an asynchronous mode, the brain activity is 

analyzed continuously and the user can freely initiate the specific mental task(s) used as 

the control signal(s); the control is not system-initiated but user-initiated. This requires 

the BCI to detect when the EEG correlates of intended control occur. For example, 

Mason and Birch have tried to implement an asynchronous BCI with a switch (Mason 

and Birch, 2003). 

5. COMPUTATIONAL TECHNIQUES 

The heart of the BCI development process concerns the techniques employed for feature 

extraction and classification of the data. Apart from the application, the construction and 

detailed implementation aspects of the central translational algorithm i.e. the methods 

used for feature extraction and classification also determine the selection of the different 

brain signals, the recording technique and the equipment. All these are interrelated and 

the selection of these regulates the aspects of the efficiency and reliability of the BCI 

module developed. In this section we try to establish benchmark criteria for selection of 

the various techniques being used by BCI researchers. The international meetings on 

brain computer interface technology (Wolpaw et al., 2000), (Vaughan et al., 2003), 

(Vaughan and Wolpaw, 2006) (Vaughan and Wolpaw, 2011), and (Huggins et al., 2014) 

have been instrumental in providing a forum for research and clinical experts. The 

discussions at such meetings have been documented and have helped in in identifying the 

desirable characteristics of these techniques. Some of the key characteristics are 

precision, responsiveness (speed), interpretability and ease of setting up. 

 
To get more information from the brain, medical instrumentation companies have come 

up with computer based monitoring systems which can record a large number of channels 

from the brain giving rise to multichannel data (for example, 128 channel recordings). 

The challenge lies in the processing of this data and for example cleaning it of artefacts 

and then modifying it in order to extract relevant information/knowledge about the 
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underlying neurological processes going on in the brain at the time it is recorded. In the 

case of online BCIs, where the data is processed in real time, it is necessary to use 

appropriate techniques for processing. These might be different from the techniques used 

for offline processing of the BCI data or to investigate novel paradigms. 

5.1 Dimensionality reduction 

BCIs base their control upon the characterisation and classification of biophysiological 

datasets (EEG) (Niedermeyer and Silva, 2005), (ECoG) (Menon et al., 1996). However, 

biophysiolgical datasets may often be multi-dimensional. For example, EEG data may be 

recorded from a large number of electrodes positioned across the scalp. The data is often 

broad frequency and spread across a range of time periods, resulting in potentially very 

high dimensional data for use in BCI control. 

 
However, for many cognitive tasks, changes in neurological activity may only be 

observed in a subset of the data, for example within specific time periods, particular 

frequency bands, and/or over certain channels. Additionally, effects such as volume 

conduction (the spread of electrophysiological activity across the scalp resulting in 

similar activity being recorded at several EEG electrodes) and high levels of redundancy 

in the data may mean similar information is available across multiple dimensions in the 

data. 

 
Dimensionality reduction techniques aim to identify an optimal sub-set of dimensions 

from a highly dimensional dataset. For example, they may be used to extract a subset of 

EEG channels that contain the most relevant information pertaining to a particular 

cognitive process (Singh et al., 2007, 2012; Yang et al., 2012). 

 

A number of computational techniques are available for dimensionality reduction. These 

include principal component analysis (PCA), single value decomposition (SVD), and 

canonical correlation analysis (CCA) etc. These three examples of dimensionality 

reduction methods are each discussed below. 
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5.1.1 Principal component analysis 

 
Principal component analysis (PCA) attempts to identify an orthogonal transformation 

that translates a set of potentially correlated variables into a set of linearly uncorrelated 

variables. These new variables are referred to as the principal components (PCs) (Smith, 

2002). 

 

PCA operates by first subtracting the mean from the data to centre it. Thus, for a feature 

set   a new, zero mean, feature set  ̄ is derived by subtracting the mean from  . The 

covariance matrix of the zero mean feature set  ̄ is then used to measure the strength of 

the relationships between all rows of  ̄. This is defined as the matrix   where each 

element      denotes the covariance between rows   and   in the feature set  ̄. 

 

       
∑        ̄            ̄    

 
   

     
 

(5.1) 

 

where      and      denote the  ’th features from different examples of the data   and  , of 

the data and  ̄    denotes the mean over a feature vector for an individual example of the 

data  . 

 

The covariance matrix is then decomposed into a matrix of eigenvectors and a vector of 

eigenvalues. This may be defined as  

       , 

where   denotes an eigenvector of the covariance matrix  , and   denotes the 

corresponding eigenvalue. 

The eigenvalues identified for   may be ranked in decreasing value. The corresponding 

eigenvectors then contain projections of the feature set onto the principal components and 

are ordered by decreasing variance. Thus, the eigenvector corresponding to the largest 

eigenvalue contains a projection of the feature set X which has the greatest variance. 
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PCA is used in a large number of BCIs where dimensionality reduction is required. For 

example, in (Kottaimalai et al., 2013). PCA is used to identify a subset of electrodes for 

classifying 5 different mental tasks (resting, letter association, math, visual counting, and 

geometric figure rotation) via an artificial neural network (ANN). Accuracies of up to 

100% are achieved when PCA is used, which is reported to be significantly higher than 

accuracies achieved without PCA. PCA is also very helpful in initial data exploration and 

to estimate the interrelationships between BCI classes/tasks in the data (Singh et al., 

2012). It can also indicate the minimum number of channels that can be used for 

classification of novel BCI tasks (Azar et al., 2014; Singh, 2009).  

 

 

5.1.2 Singular value decomposition 

 

Singular value decomposition (SVD) attempts to identify a factorization of a matrix of 

dimmensions     . SVD is closely related to eigen decomposition, but may be applied 

to matrices of any values of   and  , whereas eigen decomposition may only be applied 

to square matrices. 

 

For a matrix   of dimmensions      the SVD is given by 

 

      , 

where   and   denote orthognonal matrices of dimmensions      and       

respectively, and   denotes an      rectangular diagonal matrix. The columns of   are 

denoted    and contain the left singular vectors, while the columns of   are denoted    

and contain the right singular vectors. The diagonal elements of   are denoted    and 

contain the singular values.  

 

Singular values are sorted in descending order and used to identify the first   left or right 

singular vectors. These singular vectors may then be taken to represent a reduced subset 

of the data.  
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Singular value decomposition may be used directly with EEG data to reduce 

dimensionality. For example, in (Daly, Nicolaou, et al., 2013) three approaches to artifact 

removal are compared, including an approach, originally proposed in (Teixeira et al., 

2005), for using singular value decomposition as a dimensionality reduction step in an 

artefact removal method. 

 

The SVD-based artefact removal method is observed to remove significant proportions of 

ocular artefacts and is comparable in performance to a number of other state-of-the-art 

artefact removal methods. 

 

5.1.3 Canonical correlation analysis 

 

Canonical correlation analysis (CCA) is a method for identifying pairs of vectors from 

two matrices with maximum correlations. For example, for two matrices   and   of 

dimmensions      and      respectively CCA will attempt to find a subset of 

elements of   and   which are maximally correlated. 

 

CCA may be defined as a maximisation problem, which can be solved by maximising the 

following term 

 

   
     

        
  

      

√   
          

       
 

 

where     and     denote the autocovariance matrices of   and   respectively and     

denotes the cross covariance matrix of   and  . 

 

CCA may be used to identify a subset of dimensions of an EEG dataset which maximally 

correlate with some interesting properties of the data. For example, in (De Clercq et al., 
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2006) CCA is used to identify muscle artefacts in the EEG via their relatively low auto-

correlation with one another when compared to the EEG. 

 

CCA is also commonly used as the basis for classifying steady state visual evoked 

potentials (SSVEPs). For example, in (Daly, Billinger, et al., 2013) CCA is used in an 

online brain-computer interface (BCI) to identify frequency bands in the EEG which 

maximally correlate with SSVEP stimulation frequencies, and hence identify which 

stimuli a user is attending to and, therefore, their intended control action. 

 

5.2 Feature extraction 

Biophysiological data may be described via a number of different feature types. When 

considering neurological data measured by either the EEG or ECoG  there are three broad 

groups of features that may be extracted. These are features based upon the amplitude of 

the data, features based upon the frequency content of the data, and features based upon 

the phase content of the data (Lotte, et.al., 2007; Hwang, et.al., 2013). It’s also possible 

to consider feature types in which two or more types of feature are combined. For 

example, time-frequency features may be used to describe changes in amplitude of the 

data across different frequency bands. 

 

Features based upon the amplitude of the data include measures of the peaks in the data. 

For example, the event-related potential (ERP) is a change in amplitude of the EEG in 

response to certain stimuli or cognitive processes and may be identified via the size 

and/or latency of the peak amplitude. Amplitude based features may also include 

measures of distributions of the data, measures of relationships between different 

amplitudes (e.g. correlation), and statistical measures of amplitude differences in the data. 

 

Frequency based features may be used to describe how the frequency content of the 

signals change over time or in relation to certain events or stimuli. For example, BCI 

control may be based upon SSVEPs, an increase in frequency content in a narrow 

frequency band, in response to entrainment by an external stimuli, of a particular neural 
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oscillators in the visual cortex (Müller-Putz et al., 2005). Relationships between different 

measures of frequency content (e.g. coherence) may also be used to measure how 

frequency content changes across particular regions of the brain. 

 

Phase based features are traditionally used much less in BCI control than other feature 

types (Hwang, et.al., 2013). However, they have been shown, in some cases, to exhibit 

significant improvements in performance compared to some traditional features such as 

the event-related (de)synchronisation (a combined amplitude-frequency feature) (Daly et 

al., 2012). 

 

Features based upon a combination of different feature types are becoming increasingly 

popular in BCI research (Hwang et al., 2013). It’s likely that the recent development and 

exploration of hybrid BCIs (BCIs that combine two or more control mechanisms or 

physiological measures (Pfurtscheller et al., 2010)) are driving an increased interest in 

combined feature types (Hwang et al., 2013). 

 

5.3 Feature selection 

Feature selection refers to techniques which search a set of possible features and identify 

a subset of those features which are optimal for some purpose. For example, consider 

EEG recorded during an ERP oddball task from 19 channels positioned over the scalp. 

The oddball task is designed to produce a P300 ERP by presenting a selection of stimuli 

with a small probability of an out of sequence stimuli (i.e. different in some property 

from the majority of the other stimuli). The resulting P300 ERP is usually most apparent 

over the occipital, parietal cortices. Hence, EEG channels positioned over this region are 

more likely to see increased EEG amplitude. A feature selection approach may be used to 

identify which channels exhibit this increase in amplitude in response to the unexpected 

(target) stimuli. 

 

Feature selection may be described as manual, automated, or semi-automated. Manual 

feature selection refers to the process of selecting feature sets based upon prior 
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knowledge of the dataset and expected features of interest. Automated feature selection 

refers to computer driven selection of features and may often be performed via a machine 

learning (ML) technique. Semi-automated techniques attempt to combine these two 

methods to take advantage of the benefits of both. For example, a region of interest may 

be manually selected and an automated method then used to select the best feature set 

from within this region. 

 

Automated feature selection may be performed by either supervised or unsupervised 

methods. Supervised methods include meta data about the training data in the selection 

processes, while unsupervised methods do not. Typically, unsupervised methods amount 

to dimensionality reduction methods as discussed in section 5.4. 

 

Supervised methods may be described as filter based methods; wrapper based methods, 

or embedded methods. 

 

Filter based methods attempt to select features independently of the classification step 

(Tangermann, 2007). Relationships between different features may be used to identify the 

most relevant features i.e. those which give the most information about the cognitive 

phenomena of interest. As such filter methods may be either supervised or unsupervised. 

 

The main advantage of filter methods often lies in their computational efficiency. There 

is no need to optimize an objective function by repeated re-evaluations with a filter 

method as one would when applying a wrapper (Kohavi, 1997). As such they can be 

considered independent of the classification method chosen. This makes filter methods 

very scalable and potentially able to offer similar levels of performance on both large and 

small data-sets. 

 

Typical examples of filter techniques include clustering techniques for dimensionality 

reduction (Gan, 2007) and measures of feature similarity such as correlation (Hall, 1999). 

When applying a similarity measure features that are very similar to another can be 
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thought to be redundant and hence removed. When a supervised filter is applied the 

amount of information each feature gives about the class labels, for example the 

correlation between features and the class labels, can give an indication of how suitable a 

particular feature is for classifying the dataset correctly (Hall, 1999). 

 

A wrapper method attempts to optimize an objective function by repeated re-evaluation 

with different candidate feature sets (Kohavi, 1997). The objective function is the chosen 

classifier for the BCI hence the choice of classifier becomes an integral part of the feature 

selection process. Subsequently the classifier cannot be evaluated without the class labels 

and all wrapper methods are, therefore, supervised. 

 

Many wrapper methods are based upon the idea of meta-heuristics. A meta-heuristic 

search attempts to traverse a search space in such a way as to avoid getting stuck in local 

optima solutions (Guyon, 2003). They do this by either using multiple population 

members with randomization, by allowing backtracking of some variety, or a 

combination of the two. They are often based upon biologically inspired search 

metaphors (Kohavi, 1997). 

 

Examples of meta-heuristic wrapper techniques that are popular in BCI research include 

Genetic Algorithms (GAs), which are inspired by natural evolution (Kohavi, 1997) and 

(Yorn-Tov and Inbar, 2001). A population of candidate feature sets is created. Each 

member of this population is then evaluated against some objective function (the 

classifier) and the members that give the highest classification accuracies are taken to be 

the 'fittest'. These members are 'bred' with other fit members to create new 'fitter' child 

members (Yorn-Tov and Inbar, 2001). Over enough generations the overall fitness of the 

population increases and in ideal circumstances arrives at an optimal feature set which 

allows highly accurate classification of the data. Random mutation is applied to each 

generation to attempt to avoid the solution getting stuck in local maxima in the way a 

simple gradient ascent algorithm would (Goldberg and Holland, 1988). 
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An example of a type of genetic algorithm being used in feature selection for BCIs is 

provided in (Daly et al., 2011). In this example differential evolution (a variant of a 

genetic algorithm) is used to identify optimal channels and frequency bands for ERD 

detection during a motor imagery task. 

 

An embedded method attempts to combine feature selection and classification into one 

step (Guyon, 2003). An example of this is an Artificial Neural Network (ANN). In the 

training routine for ANNs the weights of the network are adjusted such that optimal 

classification accuracy may be achieved with the best feature set. Therefore the neural 

network incorporates both a feature selection step and a classification step (Schalk et al., 

2004). Embedded techniques are often quicker than wrapper techniques as there is often 

less need for multiple re-evaluations of candidate feature sets against an objective 

function in the training process (Guyon, 2003). 

 

Several BCI systems incorporate embedded methods for feature selection. However, it is 

not always clear that this is what is happening as the feature sets may be selected based, 

in part, upon a-priori knowledge of the paradigm. Thus, systems such as (Pregenzer and 

Pfurtscheller, 1999) select a set of features that are known a-priori to be effective at 

differentiating classes related to the paradigm. This feature set is then passed to a 

classifier with a further embedded feature selection step which sub-selects optimal 

features from this candidate feature set. 

 

5.4 Classification techniques  

Classification techniques attempt to identify which class a previously unseen dataset 

belongs to by applying a classification rule to the data. The classification rule is typically 

trained on previously seen examples of the data from each of the available classes before 

being applied to new data. 

 

Formally, for a two class problem a function is estimated as              , where a 

new, previously unseen, dataset is labeled either as -1 or +1 depending upon which side 
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of a decision boundary it falls. The process of identifying an optimal function   from 

training data effectively amounts to learning the class membership / learning the inter-

class decision boundary. 

 

Classifier training may often be split into several stages to attempt to minimise the bias-

variance trade-off problem. This typically involves using a training set to first estimate 

the classifier’s decision boundary, followed by a validation set, which may be used to test 

and further refine the boundary. The final data the classifier is to be applied to is referred 

to as the testing set. 

 

Classifier techniques are used in the majority of BCI applications (Hwang et al., 2013). 

For example, in (Jin et al., 2013) a Bayesian linear discriminant analysis (BLDA) 

classifier is used to identify trials which contain P300 event-related potentials (ERPs) for 

the control of an ERP based online BCI. BLDA operates by attempting to identify a 

linear combination of features which optimally separate them into the correct classes via 

a decision boundary. Mean online classification accuracies of 94.5±5.1% are obtained. 

 

Other types of classification technique that are popular for use in BCIs include support 

vector machines (SVMs), hidden markov models (HMMs), artificial neural networks 

(ANNs) etc. (Hwang et al., 2013). To discuss an example of one more of these classifier 

types hidden markov models (HMMs) are considered. 

 

HMMs attempt to characterise the temporal dynamics of a time series of bio-signals as a 

markov processes. Specifically, the observed datasets are assumed to be generated by an 

underlying markov process, with each state in that markov process generating the 

observed features according to some probability distribution. Estimation of these 

distributions and state transition probabilities for a markov process may be performed as 

part of the classifier training process. A HMM is typically trained for each class and then 

used to classify new data by identifying which HMM has the greatest probability of 

having generated the new data. 
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HMMs have been successfully applied to classify EEG data in a BCI context in (Daly et 

al., 2012). In this example EEG data recorded during a motor imagery task is first 

characterised via phase based features before HMMs are trained to differentiate left vs. 

right index finger motor imagery. Highly significant classification accuracies are 

achieved using this approach. 

 
Another algorithm used for classification purposes is the Linear Discriminant Analysis 

(LDA) classifier. LDA is a simple technique widely used in BCI applications because it 

is computationally efficient and robust. This method maximizes the ratio of ‘between-

class’ variance to the ‘within-class’ variance in any particular dataset thereby 

guaranteeing maximal separability (Perez and Cruz, 2007). It can also handle the cases in 

which the ‘within-class’ frequencies are unequal. Evolving from the same principles as of 

PCA, it holds the advantage over PCA in that the shape and location of the original 

datasets changes when transformed to a different space whereas LDA does not change 

the location but only tries to provide more class separability and identifies a decision 

boundary between the given classes.  

 

The future of the BCI techniques lies in the standardisation of the computational 

methods. This will not only help to launch a BCI based product in the market but will 

also broaden the spectrum of BCI applications.      

 

6. BCI EVALUATION  

BCI research has reached a level where there are large varieties of combinations of 

feature extraction and classification techniques being used by research groups all over the 

world (Hwang et al., 2013). It is important to have benchmark criteria which not only 

provide a quick and easy means of identifying the relative success of the technique but 

also act as a standard to compare the relative performance of all the techniques. Possible 

criteria are discussed in (Billinger et al., 2012) and include classification accuracy, 

Cohen’s Kappa coefficient, mutual information of discrete, and continuous output. 
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Two measures of classification accuracy may be considered, overall accuracy and 

individual accuracy. Overall accuracy is calculated as the ratio of the sum of the diagonal 

elements of the classifier generated confusion matrix and the total number of samples. 

The specific accuracy for each class is the ratio of the diagonal element (hits) for that 

particular class and the total number of sample points for that class (sum of the row 

elements of the confusion matrix for that particular class).  

 

The output of the validation procedure is devised in the form of specific parameters using 

BCI terminology. Transfer rates may be calculated to measure the speed with which users 

may operate a BCI. Cohen’s kappa coefficient, which is reported to be a better 

representation of the accuracy as it takes into account the occurrence of a chance (Schlogl 

et al., 2007), may also be used. Kappa coefficient is 1 in case of a perfect classification 

and is 0 if the predicted class has no correlation with the actual class. Specific accuracy 

for each of the two classes gives an idea of the performance of the classification 

algorithm for each of the classes.  Correlation and signal to noise ratio may also be used.  

 

7.   Conclusion 

Brain-computer interfaces (BCIs) are a rapidly growing field (Hwang et al., 2013), with a 

large and growing number of researchers attempting to tackle the multiple challenges 

presented by this highly interdisciplinary area of research. 

 

BCIs may be described by multiple component stages. These have been outlined and 

described in this chapter and include components for data acquisition, pre-processing, 

dimensionality reduction, feature extraction/selection, classification, and application. 

Each of these component parts is researched with the aim of developing novel and 

improved components and applications to allow BCIs to meet the needs of new user 

groups and improve the performance of BCI systems provided to existing user groups. 

One such example is the hybrid BCI, in which two or more different data acquisition 

methods or BCI paradigms may be combined (Pfurtscheller et al., 2010). For example, 
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simultaneous electroencephalogram (EEG) and near infrared spectroscopy (NIRS) may 

be combined with the aim of using the combination of electrophysiological and 

haemodynamic responses to provide more accurate control to BCI user groups (Fazli et 

al., 2012). 

 

Another example is the use of BCIs in neuro-rehabilitation for stroke (Ang et al., 2010). 

This represents a novel application of BCI technology, in which closed loop BCI control 

of an application is utilised to induce changes in levels of neuroplasticity in the user. The 

aim is to promote beneficial neuroplastic changes which allow compensatory neural areas 

to “take over” from lesioned cortical regions (Silvoni et al., 2011). 

 

In each of these new developments in BCI technology the heart of the BCI remains the 

translational algorithms. Indeed, translational algorithms retain an essential role in all 

types of BCI, that of converting raw, noisy, non-stationary neural data into stable and 

realisable control commands for a computer, robotic device, or other application. 

We categorise translational algorithms into four different types: dimensionality reduction, 

feature extraction, feature selection, and classification. Not every BCI type requires every 

one of these types of translational algorithm, but all BCI types require some combination 

of some of these translational algorithms. 

 

Dimensionality reduction algorithms are typically used as a pre-processing step in the 

processing pipeline at the heart of a BCI. They aim to take a high dimensional dataset 

(for example, one composed of multiple channels, sample points, frequency bands, etc.) 

and reduce it to just the most relevant dimensions of interest. Typical examples of 

dimensionality reduction methods were discussed in this chapter and include methods 

such as principal component analysis and singular value decomposition. 

Feature extraction refers to the method(s) by which raw brain signals are translated into 

features describing some relevant property of the brain state. Raw signals are the signals 

recorded from the brain at the data acquisition stage and can include EEG amplitudes, 

electrocortiogram (ECoG) amplitudes, blood oxygenation levels (fNIRS, fMRI) etc. The 
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process of converting these raw signals to features of interest may vary considerably 

depending on the type of raw data, the cognitive task(s) the user is attempting in order to 

control the BCI, and the processing limitations of the available computers. Examples can 

include measures of signal magnitude (e.g. EEG amplitude), measures of frequency 

content of the data, and more complex measures such as connectivity measures between 

different regions of interest within the brain. 

 

Feature selection refers to the automated or semi-automated selection of a relevant subset 

of the features extracted from the raw brain signals. Automated feature selection may be 

used in cases where there isn’t a clear set of well known “good features” for the particular 

cognitive paradigm. It may also be used to provide some compensation for the problem 

of inter-subject variability in neural data (Niedermeyer and Silva, 2005). The 

neurological data recorded from two individuals is not completely alike and automated 

feature selection may be used to find the best set of features for a particular individual 

during a particular BCI control task. Feature selection is most commonly performed 

using methods from machine learning and may include methods such as genetic 

algorithms, random forest searches etc. 

 

Finally, classification refers to the identification of corresponding discrete class labels for 

a selected feature set. This may also be performed using tools taken from the machine 

learning toolbox, for example, support vector machines (SVMs) or linear discriminant 

analysis (LDA) classifiers, and may be combined with the feature selection method or 

performed independently. 

 

New algorithms and methods are in a constant state of development by the BCI 

community and are opening up increasing possibilities for applications, data acquisition 

types, and target user groups. Many of these new possibilities require advancements in 

translational algorithms. Thus, research and development of translational algorithms, 

both by the BCI community and others, may be seen as the engine of BCI research and 

development and forms a vital part of the field of multidisciplinary BCI research. 
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Regarding the future directions of BCI research it’s possible to make a few statements 

about the role of translational algorithms. First, every existing method of data acquisition 

from the central nervous system produces data which is non-stationary and noisy. Thus, 

there is likely to be a need for a number of the translational algorithms described in this 

chapter for the foreseeable future in BCI for tasks such as de-noising the data, extracting 

and selecting features of interest, and identifying the relevant class labels corresponding 

to the data. Second, while there will be a need for these algorithms they will not all be 

required in every application. For example, features may be mapped directly to a control 

action, removing the need for a classifier to identify corresponding class labels, or the 

need for feature selection may be mitigated if a-priori knowledge of suitable features is 

available. 

 

Finally, advances in computational technology and machine learning research mean that 

new and more advanced translational algorithms are constantly been developed. This 

development is not just confined to the BCI research community and often machine 

learning algorithms developed for other purposes are co-opted into the community (for 

example LDA classifiers (Xu et al., 2011)), while algorithms developed within the 

community may also find other uses elsewhere (for example common spatial patterns 

(Koles et al., 1990)). This process is likely to continue and accelerate of the coming years 

and advancements in computing technology allow the deployment of ever increasingly 

advanced algorithms. An example of this may be seen in the use of machine learning 

algorithms for feature selection. More advanced machine learning algorithms may be 

employed as computing technology allows them to be run in sufficiently short times to 

allow their use during online BCI applications. 
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